6=320/x^2

Simple and best practice solution for 6=320/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6=320/x^2 equation:



6=320/x^2
We move all terms to the left:
6-(320/x^2)=0
Domain of the equation: x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-320/x^2+6=0
We multiply all the terms by the denominator
6*x^2-320=0
We add all the numbers together, and all the variables
6x^2-320=0
a = 6; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·6·(-320)
Δ = 7680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7680}=\sqrt{256*30}=\sqrt{256}*\sqrt{30}=16\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{30}}{2*6}=\frac{0-16\sqrt{30}}{12} =-\frac{16\sqrt{30}}{12} =-\frac{4\sqrt{30}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{30}}{2*6}=\frac{0+16\sqrt{30}}{12} =\frac{16\sqrt{30}}{12} =\frac{4\sqrt{30}}{3} $

See similar equations:

| w(-)2+2w=6+5w | | 16(t^2-4t+3)=0 | | 3j=-12-3j | | 5u(u-1)(u+2)=0 | | x^2+2x+6=8x-2 | | 3j=12-3j | | 9.7–4d=–2.3 | | 5x^2+3x^2=3+7 | | X(x+3)=460 | | .9.7–4d=–2.3 | | 18x-15x=30 | | x^2+24x-3=0 | | 3/8x-1/10=-5/8x-3/5 | | -5+16y=43 | | -8=-2(x+6) | | (7h​3​​+8h)=(9h​3​​+h​2​​−2h) | | 4.22v=37.8 | | 2z+5/5=3z=1/2+7-z/2 | | 22=1/2/h(4+7) | | 33=-7-8a | | 11+k/2=60 | | 3(2y+4)=4(2y−12) | | 5/9y=4/7 | | 5x^2−34x=−24 | | 5x2−34x=−24 | | 2x-3=135+45 | | -3(2x+8)+5=4x-21 | | 5=36A-6B+c | | -5=5(7+p) | | 36=6+x/5 | | 22=1/5x(4+7) | | 8b-3=4(2b+3) |

Equations solver categories